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higher in the middle but, when told it is uniform,
decide the second distribution is also uniform.

It is no wonder then that more subtle issues
prove even more elusive. For example, say a pro-
ject depends on successful completion of seven
tasks. To keep it very simple, assume there are
no forward and backward dependencies, but that
all tasks can be performed simultaneously. Nev-
ertheless, all tasks must be accomplished for the
project to be complete. 

If the expected time to complete each task is
one month with a standard deviation of two
weeks, it is subtly tempting to assume that the
expected time to complete the project is also one
month. Here we see the “flaw of averages” at
work. Stated simply, the average of a function of
random variables is not equal to the function of
the averages of those same variables unless the
function is linear (and such functions are less
often linear than we think). In this case, the time
to complete the project is the maximum realisa-
tion of seven random durations for each task,
which is not a linear function.

In many cases, undesirable results (such as
cost or risk exposure) occur on both sides of the
mean value for uncertain variables. A common
example is the potential credit exposure for a pair
of matched interest rate swaps. If rates follow the
implied forward path through the life of the swap,
total exposure will be small. If, however, rates
deviate significantly from that path in either di-
rection, total exposure will be large. Quite obvi-
ously, exposure on the average path is not the
average exposure. This is, however, a mistake I

have seen made frequently over the years.
Even more subtle cases can arise when deal-

ing with results that are linear but where the
volatility of the result matters. Return on invest-
ment is an obvious case. Most business people
understand the importance of diversification in
their personal investment portfolios. When it
comes to making decisions about funding alter-
native investment projects in their business, how-
ever, this insight often disappears. 

The standard approach is to require return
analysis based on mean expectations for cost and
revenue, then fund those projects in the order of
highest to lowest expected return. This can easi-
ly lead to an excessive concentration of projects
with common economic drivers and high corre-
lation of returns. Consideration of likely correla-
tions would often indicate that choosing some
lower return projects with greater statistical inde-
pendence would reduce volatility of return with
only a modestly lower level of expected return.

Distributions
A common reaction to volatility-based analysis is
that there is no data to estimate the required dis-
tributions. I believe this situation is little different
from the basis for expected returns. It is always
necessary to apply reasoned judgment concerning
market size, potential penetration and estimated
production costs. Many factors enter these calcu-
lations, and a significant portion of them will re-
late to external factors beyond the planner’s
immediate control. 

Rarely is there adequate information to ground
the projections in a formal statistical estimation
process. Rather, some reasonable judgment must
be applied and defended at each step until the
final conclusion. The same is true when specify-
ing the distributions of unknown variables and
the relationships among them. Obviously it is
good to experiment with a range of values for
such things as correlations among random vari-
ables. Even reasonable point estimates of such
correlations, determined on a purely judgmental
basis, combined with corresponding Monte Carlo
analysis, will provide a huge advance over sim-
ple point estimates of the means of the variables. 

Remember, even if the point estimates of the
means are exactly correct, the resulting estimate
of net income is only correct if all relationships
are linear, and that is rarely the case.

The bottom line of all of this is that volatility
and uncertainty are all-pervasive phenomena.
Risk analysts need to be constantly on guard
against the misleading implications of analysis
based only on estimates of the averages of un-
known variables. In the end, Monte Carlo analy-
sis based on purely hypothetical distributions will
at least frame the problem correctly, and high-
light dangerously misleading implications result-
ing from the flaw of averages. ■
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Flaw of averages
Statistical intuition is an essential skill for risk managers but, argues David Rowe, don’t

assume that other business professionals share such intuition, and beware of
overconfidence in our own

M
ost risk managers have consid-
erable statistical training and ex-
perience. This merely reflects a
normal prior-selection process,

since such skills are important prerequisites for
filling the role effectively. Such skills are gener-
ally accompanied by reasonably sound intuition
concerning the inevitable uncertainty that sur-
rounds any point estimate of an unknown value. 

Generally, we know the key percentiles of the
normal distribution by heart and we also know
then to beware of leptokurtosis, or “fat tails”. Be-
yond that, we generally recognise the pervasive
importance of diversification in mitigating volatil-
ity and reducing the likelihood of outliers. 

But all of this can lead to a dangerous mis-
conception – namely that everyone else views
the world through similar eyes. A small but grow-
ing body of evidence indicates a surprisingly low
level of statistical intuition among non-technical
business professionals.

Spinners and averages
For several years, Sam Savage (who originated
the term The Flaw of Averages), of Stanford Uni-
versity’s department of management science and
engineering,  has been conducting seminars de-
signed to develop practical statistical insights
(see www.analycorp.com, and www.stan-
ford.edu~savage). His work clearly indicates
that knowledge of statistical theory does not nec-
essarily imply sound statistical intuition. He reg-
ularly asks his audiences to describe the
distribution of the results (or the probability den-
sity function, although he would never describe
it as such) for two different random processes. 

The first is a simple spinner that twirls around
a circle marked from zero to one. The result of
any given spin is the number to which the head
of the arrow points when it comes to rest. After
those answers are recorded, he shows the cor-
rect distribution using Monte Carlo simulation in
Excel. The answer, of course, abstracting for
some small sample noise, is a uniform distribu-
tion with equal likelihood at all points from zero
to one. He then asks participants to describe the
distribution that occurs when the result is deter-
mined as the simple average of two such spins.
The precise result is a triangular distribution, but
he is willing to accept any shape that goes up in
the middle and falls in both tails.

In almost all cases, the audience’s answers are
one of these two alternatives. But surprisingly,
only about 25% get both queries correct. About
25% think both distributions are uniform, failing
to see the implications of this classic illustration
of diversification. Another 25% say both distribu-
tions are higher in the middle, apparently think-
ing some kind of normal shape is the most likely
answer to any statistical question. More remark-
able still, about 25% think the first distribution is


